If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-40x-12000=0
a = 1; b = -40; c = -12000;
Δ = b2-4ac
Δ = -402-4·1·(-12000)
Δ = 49600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{49600}=\sqrt{1600*31}=\sqrt{1600}*\sqrt{31}=40\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40\sqrt{31}}{2*1}=\frac{40-40\sqrt{31}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40\sqrt{31}}{2*1}=\frac{40+40\sqrt{31}}{2} $
| -15=-5/6w | | 3u/4=-18 | | 5(-5+4d)=35 | | 4=v/2+3 | | x/7+13=2 | | y=3y=12 | | y+3y=12y | | 2(9c+6)=84 | | -8-5b=3b-26 | | Y=500000x0,5*2 | | 3(n-1)÷2=n-4 | | 3m=5m– | | 7y-6=5y+12 | | 13x+4=-7x+9 | | 2(x-3)-3=2+(5x+1) | | 2d+3-d=2d-5 | | -2g-5=-5g-2 | | 2y+3=3y-4 | | 21a+35=56a | | 3x-x-3=2x+x-3 | | 9x=54. | | 5×+3=4/3(1+x) | | 4(1-z)=2(z-7) | | 2x^2-116x-910=0 | | 7x+10x=3x+120 | | 2x+x+52=190 | | 10x+7=27+6x | | 9x-17+4x+28=90 | | 145+3k/88+k=2 | | z–7=4 | | 4p-3=5p+7 | | 10x-5=7x+3x+74; |